
Kotlin
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Kotlin Coroutines
◦ Overview

◦ Coroutine Scope

◦ Coroutine Builder

◦ Coroutine Dispatcher

◦ DB Operations and Coroutines

◦ Coroutines and Critical Sections

© 2024 Arthur Hoskey. All
rights reserved.

Coroutine

Coroutine

 An instance of a suspendable computation. This means it can be
stopped then restarted.

 Similar to a thread, runs code currently with other program code.

 A coroutine is not associated with a particular thread (the same
coroutine can be run on different threads).

 A coroutine can suspend its execution on one thread and complete its
execution on another thread.

 Coroutines take up less resources than threads.

val myScope = CoroutineScope(Dispatchers.IO)

myScope.launch {

 // Code to run in coroutine

}

 Taken from the following link:

https://kotlinlang.org/docs/coroutines-basics.htmls

© 2024 Arthur Hoskey. All
rights reserved.

Create a coroutine scope. Dispatcher.IO

will make it run on another thread.

launch. Coroutine builder that launches a

new coroutine. Code inside launch runs

concurrently with non-coroutine code.

https://kotlinlang.org/docs/coroutines-basics.html

Coroutine Runs Can Run on
Different Threads

Coroutine

 In this example, the coroutine starts on Thread 1 and then
suspends.

 When the coroutine resumes it runs on Thread 2 and finishes.

© 2024 Arthur Hoskey. All
rights reserved.

Thread 1Coroutine

 {

 // do something

}

1. Coroutine runs on Thread 1 for a

while then suspends. Thread 1 can

be used for something else after

the coroutine suspends.

Thread 22. Coroutine runs on

Thread 2 and finishes.

Coroutines and Threads

Thread 1

Multiple coroutines can each execute on different threads.

Coroutines can start on one thread, suspend, and continue

on another thread. Threads can move between cores.

© 2024 Arthur Hoskey. All
rights reserved.

Coroutine

{

 // do something

}

Coroutine

{

 // do something

}

Coroutine

{

 // do something

}

Thread 2

Thread 3

start

finish

start/

finish

start

finish

Core 1

CPU

Core 2

Core 3 Core 4

start

finish

start/

finish

start

finish

Coroutine Example

Coroutine Example

 The code in the coroutine block runs independent of the other
code.

fun normalMethod() {

 val myScope = CoroutineScope(Dispatchers.IO)

 myScope.launch {

 delay(2000L) // non-blocking delay for 2 seconds

 Log.d("MY_DEBUG", "2") // print after delay

 }

 Log.d("MY_DEBUG", "1") // Prints 1 before coroutine prints 2

}

© 2024 Arthur Hoskey. All
rights reserved.

Coroutine code

Output

1

2

Code outside

coroutine

This block creates and

starts a coroutine

Create coroutine

scope

suspend Keyword

suspend Keyword

 A function can be decorated with the suspend keyword.

 suspend means that the function can be blocked (suspended).

 If a function is decorated with suspend it can only be called from within a
coroutine.

suspend fun doSomething() {

 // Code for some long running operation goes here

}

© 2024 Arthur Hoskey. All
rights reserved.

This function can only be

called from a coroutine

(since it is a suspend function)

suspend Function Example

suspend Function Example

 The code below uses a user-defined suspend function.

fun normalMethod() {

 val myScope = CoroutineScope(Dispatchers.IO)

 myScope.launch {

 doSomething()

 }

 Log.d("MY_DEBUG", "1") // Prints 1 before coroutine prints 2

}

suspend fun doSomething() {

 delay(2000L)

 Log.d("MY_DEBUG", "2") // print after delay

}

© 2024 Arthur Hoskey. All
rights reserved.

Call the user-defined suspend

function from the coroutine scope

User-defined suspend function

definition. This function can only be

called from a coroutine scope.

Coroutine Scope

 Now on to coroutine scope…

© 2024 Arthur Hoskey. All
rights reserved.

Coroutine Scope

Coroutine Scope

 A coroutine scope determines how long a coroutine can live.

 A coroutine scope does NOT start a coroutine.

 The coroutine scopes listed below are recommended because
they will automatically cancel jobs according to the app's
lifecycle.

 Suggested coroutine scopes to use:

◦ lifeCycleScope – Coroutines will run according to the lifecycle of the
containing activity. If the containing activity is destroyed, then the
coroutines will also be destroyed.

◦ viewModelScope – Coroutines run according to the view model
lifetime. If the view model is destroyed, then the coroutines will also be
destroyed. This can only be used from inside of a view model.

© 2024 Arthur Hoskey. All
rights reserved.

Coroutine Scope Examples

Coroutine Scope Examples

 Coroutine lifetime is determined by the coroutine scope.

lifecycleScope.launch {

 // Coroutine code here

}

class MainViewModel : ViewModel() {

 fun doSomething() {

 viewModelScope.launch {

 // Coroutine code here

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

ViewModel class

View Model Scope. Coroutines will only be

canceled when the view model is destroyed.

viewModelScope can only be used from inside a

view model.

Life Cycle Scope. Coroutines will only be canceled

when the containing activity ends.

Other Coroutine Scopes

Other Coroutine Scopes

 There are other coroutine scopes that require canceling to be sure
that jobs are not running longer than they should.

 For example, there may be coroutines that are tied to the view
model and should be canceled if the view model is destroyed.
This would not happen using the scopes below.

 Other coroutine scopes:

◦ GlobalScope – Coroutines will run for as long as the application is
running. If the activity that the coroutines are running in is destroyed,
the coroutines will still keep running. This could be very bad because
the activity cannot be garbage collected (could cause memory
problems).

◦ CoroutineScope – Coroutines run in a general coroutine scope. Other
scopes are derived from this scope. Need to make sure that jobs in this
scope are canceled if necessary.

© 2024 Arthur Hoskey. All
rights reserved.

More Coroutine Scope Examples

More Coroutine Scope Examples

GlobalScope.launch {

 // Coroutine code here

}

val myScope = CoroutineScope(Dispatchers.IO)

myScope.launch {

 // Coroutine code here

}

© 2024 Arthur Hoskey. All
rights reserved.

Global Scope. Coroutines will only be canceled

when the app itself ends

Coroutine Scope. Coroutines will only be canceled

when the app itself ends

Use scope variable to launch the coroutine

Coroutine Builder

 Now on to coroutine builder…

© 2024 Arthur Hoskey. All
rights reserved.

Coroutine Builder

Coroutine Builder

 Coroutine builders create and start coroutines.

 Here are some coroutine builders:

◦ launch – Concurrent. Creates and starts coroutines that run
independent of the calling code (does NOT block the calling code). It is
used for "fire and forget" type execution. This means it does not return
a result. The calling code is not waiting for the coroutine to return a
value to it.

◦ async – Concurrent. Creates and starts coroutines that need to return
a value. These coroutines run independent of the calling code. The
calling code can call await when it gets to a point where it must have
the value that it is waiting for (await will make it wait for the value to
be returned).

◦ runBlocking – Blocking. Runs coroutines but blocks all other activity
on the current thread. Other activity cannot run until all coroutines in
runBlocking are finished. The benefit is that it allows normal
(nonsuspendable) functions to call suspendable functions. Coroutines
run inside of runBlocking are executed sequentially. Bridges the gap
between regular blocking code and suspendable code.

© 2024 Arthur Hoskey. All
rights reserved.

Coroutine Builder Examples

Coroutine Builder Examples

 Coroutine builder creates and starts a coroutine.

lifecycleScope.launch {

 // Coroutine code here

}

lifecycleScope.launch {

 // Coroutine code here

 launch {

 // Coroutine code here

 }

 launch {

 // Coroutine code here

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

launch coroutine builder.

Starts first coroutine.

launch coroutine builder. Starts a second

coroutine (uses same settings as the parent

coroutine scope).

launch coroutine builder. The block following launch

is the code that will execute in the coroutine.

launch coroutine builder. Starts a third coroutine

(uses same settings as the parent coroutine

scope).

More Coroutine Builder Examples

More Coroutine Builder Examples

 Async coroutine builder example

val coroutineScope = CoroutineScope(Dispatchers.IO)

coroutineScope.launch(Dispatchers.IO) {

 val deferredResult = async {

 longRunningOperation()

 }

 // Do things here that do not require the async result.

 // This code runs concurrent with the async code.

 val resultFromLongRunningOperation = deferredResult.await()

 // Do things here that require the result from the async coroutine.

}

suspend fun longRunningOperation() : String{

 // Network, database, file, or other long running code here

 return "Data from longRunningOperation";

}

© 2024 Arthur Hoskey. All
rights reserved.

async coroutine builder. Starts a

coroutine that returns a result.

Call await on deferredResult.

This will suspend the coroutine

until the result is returned.

More Coroutine Builder Examples

More Coroutine Builder Examples

 runBlocking creates and starts a coroutine.

runBlocking {

 launch {

 delay(2000)

 println("Coroutine 2")

 }

 launch {

 delay(2000)

 println("Coroutine 3")

 }

 println("Coroutine 1")

}

println("After coroutine")

© 2024 Arthur Hoskey. All
rights reserved.

The output will likely be:

Coroutine 1

Coroutine 2

Coroutine 3

After coroutine

Note: "After coroutine" will

always be last but there is a

chance the other lines may

appear in a different order.

runBlocking creates and

starts a coroutine

"After coroutine" will always be the last output in

this example because it appears after runBlocking

(cannot run this statement until AFTER runBlocking

finishes executing all its coroutines)

Start a 2nd coroutine

Start a 3rd coroutine

This message is likely to appear before the

two other coroutine messages since the other

coroutines must be created and started

Coroutine Dispatcher

 Now on to coroutine dispatcher…

© 2024 Arthur Hoskey. All
rights reserved.

Dispatchers

Dispatchers

 Indicate which threads a coroutine can execute on.

 A coroutine builder is given a dispatcher value. It will use the
dispatcher value to determine which thread(s) it can execute its
coroutines on.

 Here are some dispatchers (there are others):

◦ Dispatchers.IO – Coroutines can run on any threads from a
background pool of threads (not the main thread). Use this dispatcher
for long running background tasks such as network, database call, or
any type of file input/output.

◦ Dispatchers.Main – Coroutines run on the main thread.

© 2024 Arthur Hoskey. All
rights reserved.

Dispatcher Examples

Dispatcher Examples

 The dispatcher decides which thread(s) the coroutine can execute
on.

© 2024 Arthur Hoskey. All
rights reserved.

Main Thread

lifecycleScope.launch(Dispatchers.Main) {

 // Coroutine code here

 launch {

 // Coroutine code here

 }

 launch {

 // Coroutine code here

 }

}

Dispatchers.Main

lifecycleScope.launch(Dispatchers.IO) {

 // Coroutine code here

 launch {

 // Coroutine code here

 }

 launch {

 // Coroutine code here

 }

}

Thread Pool

Thread 1 Thread 2

Thread 3 Thread 4

Dispatchers.IO

Coroutines run on

the main thread

Coroutines

run on any

thread in the

pool

DB Operations and Coroutines

 Now on to DB operations and coroutines…

© 2024 Arthur Hoskey. All
rights reserved.

DB Operations and Coroutines

DB Operations and Coroutines

 If you are running code that uses a database, you will get a compile error
if it runs on the main thread.

 For example, use viewModelScope to run a coroutine within a ViewModel.

 viewModelScope is better than a normal coroutine scope because it is
lifecycle aware (will cancel its coroutines if the ViewModel is cleared).

 For example:

// Function in ViewModel

fun loadFromDB() {

 viewModelScope.launch(Dispatchers.IO) {

 // Call method to query DB here

 }

}

viewModelScope.launch {

 // Call method to query DB here

}

© 2024 Arthur Hoskey. All
rights reserved.

viewModelScope.launch. Coroutine builder that

launches a new coroutine. Code inside the block

runs concurrently with non-coroutine code. Make

sure to specify Dispatchers.IO

IMPORTANT! viewModelScope defaults to

Dispatchers.Main. So, an error will occur

unless Dispatchers.IO is passed in.

DB Operations and Coroutines

DB Operations and Coroutines – Example with Error

 The following will NOT WORK!!!

// Function in ViewModel

fun loadFromDB() {

 viewModelScope.launch() {

 // Call method to query DB here

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Launch uses the default dispatcher in this case since

none is specified (Dispatchers.Main.immediate). The

default dispatcher will run on the main thread. You

will receive the following error (or something similar):

Cannot access database on the main thread since it

may potentially lock the UI for a long period of time.

Kotlin Coroutines and Critical
Sections

 Kotlin coroutines and critical sections…

© 2024 Arthur Hoskey. All
rights reserved.

Mutex

Mutex

 Use Mutex to create a critical section for coroutines.

 withLock creates a block that automatically acquires and releases
the lock.

 withLock can an only be used inside of a suspend function.

val mutex = Mutex()

val myScope = CoroutineScope(Dispatchers.IO)

myScope.launch {

 mutex.withLock()

 {

 // Critical section code goes here

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Declare mutex variable

Mutex variables can only be used inside

suspend functions (launch is suspend)

Acquires lock here

Releasees lock here

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: Kotlin
	Slide 2: Today’s Lecture
	Slide 3: Coroutine
	Slide 4: Coroutine Runs Can Run on Different Threads
	Slide 5: Coroutines and Threads
	Slide 6: Coroutine Example
	Slide 7: suspend Keyword
	Slide 8: suspend Function Example
	Slide 9: Coroutine Scope
	Slide 10: Coroutine Scope
	Slide 11: Coroutine Scope Examples
	Slide 12: Other Coroutine Scopes
	Slide 13: More Coroutine Scope Examples
	Slide 14: Coroutine Builder
	Slide 15: Coroutine Builder
	Slide 16: Coroutine Builder Examples
	Slide 17: More Coroutine Builder Examples
	Slide 18: More Coroutine Builder Examples
	Slide 19: Coroutine Dispatcher
	Slide 20: Dispatchers
	Slide 21: Dispatcher Examples
	Slide 22: DB Operations and Coroutines
	Slide 23: DB Operations and Coroutines
	Slide 24: DB Operations and Coroutines
	Slide 25: Kotlin Coroutines and Critical Sections
	Slide 26: Mutex
	Slide 27: End of Slides

